BLM AK Conservation Priority Areas 80/20

Nov 19, 2014 (Last modified Nov 21, 2014)
Description:
The areas depicted in this shapefile were derived for an analysis of potential conservation priority areas on Bureau of Land Management (BLM) lands, and across three BLM planning areas in Alaska, namely the Bering Sea/Western Interior, Central Yukon, and Eastern Interior planning areas. Steps used to derive these core areas are described below.

Due to data limitations for Alaska, certain input datasets have been substituted; therefore, this analysis of certain BLM lands in Alaska has not been wholly subject to peer review commensurate with the below-referenced study.  For a detailed account of the general methodology used, see the peer-reviewed article by Dickson et al. 2014.

Specifying the analysis extent
Ownership data were obtained from the AK state spatial data management system (http://sdms.ak.blm.gov/sdms/).
Areas included in the analysis extent were located outside of existing special designations, including national monuments, wilderness areas, and wilderness study areas (WSAs). We excluded WSAs because they are provisionally protected until their designation is changed through legislative action by the U.S. Congress. We used land management designations in the U.S. Protected Areas Database and a geographic information system (GIS; ArcGIS v10.1, Esri, Redlands, CA) to identify and remove the aforementioned lands from our analysis extent.

Because we were interested in identifying candidate areas that could meet the criteria for the highest level of protection, i.e., wilderness designation, we also required lands in the analysis extent to be contiguous areas > 20.2 km2 (or 5,000 ac, by convention the minimum size for wilderness designation in the U.S.) after removal of areas otherwise occupied by roads, railroads, and electric power transmission lines. We used roads data obtained from the AK State Geo-spatial Data Clearing House (2006) to buffer (5 m per side) and remove all linear road features from the analysis extent. Additionally, we removed railroads and powerlines, also using a 5-m buffer. Contiguous areas < 20.2 km2 were removed from consideration in our analysis extent.

We defined our analysis extent using readily available data on current road networks. Nevertheless, our results likely reflect errors in these data that would be difficult to quantify over extensive portions of AK, so we urge data users to scrutinize areas we assumed to be ‘roadless.’ Users should also be mindful of high value areas within BLMs jurisdiction where errors of commission (i.e., the presence of a road is falsely indicated by the roads data) could have resulted in these areas being excluded from our analysis.

Deriving ecological indicators and spatial data layers
Through an extensive literature review and subsequent consultations with experts in the field of conservation indicators, we identified a suite of seven variables that were both readily available and spatially contiguous across our analysis extent to serve as ecologically based indicators of biodiversity, resilience to climate change, and/or landscape connectivity. These variables (i.e., data layers) included estimates of landscape naturalness (modified after Theobald [2010]), vertebrate species richness and rare  plant species richness (obtained from AK Natural Heritage Program), surface water availability (derived using the 2008 USGS National Hydrography Dataset), topographic complexity (derived using the USGS Natl. Elevation Dataset), vegetation community diversity (from the 2011 USGS Gap Analysis Program), cliome resilience (obtained from the Scenarios Network for AK and Arctic Planning), and ecoregional protection USGS PAD). Within a GIS, each indicator variable was derived as a raster data layer at a 270-m pixel resolution and summarized at three spatial scales (described in following section) across Alaska. We used a 270-m resolution because it presented a reasonable trade-off between certainty in the pixel value of a given indicator variable and computational efficiency.

Determining appropriate scales of analysis
We conducted our analyses at each of several spatial scales to explicitly address potential scale-dependencies of outcomes. We chose 20.2 km2 (5,000 ac), 80.9 km2 (20,000 ac), and 263.1 km2 (65,000 ac) (hereafter 20, 80, and 260 km2) as the most appropriate spatial scales for our analysis because 20 km2 is the mandated minimum size for wilderness areas in the U.S. (Wilderness Act 1964) and because we observed 80 and 260 km2 to be natural breaks in the distribution of sizes of contiguous areas > 20.2 km2 in an analysis extent defined by the 11 western states (see Dickson et al. 2014). At each scale, each indicator variable was summarized using a single focal statistic based on a circular moving window operation within a GIS. All focal statistics were generated at the extent of the 11 western states in a contiguous fashion before extracting the data to the analysis extent. This step attempted to prevent edge effects and ensure that the ecological context provided by lands adjacent to those in the analysis extent was not lost.

Statistical modeling

We conducted a principal components analysis (PCA) on the indicator variables to eliminate collinearities and to reduce the dimensionality of these data to a smaller set of new variables represented by principal component ‘axes' (see Dickson et al. 2014). These axes simultaneously integrated information from multiple indicators but also reduced computational costs. We standardized each variable to a mean of zero and unit variance prior to statistical modeling. We then used the first four PCA axes in a weighted linear combination (WLC) model (see below) for each scale of analysis. We used these new variables (axes) and the WLC modeling approach to assign a conservation score to each pixel in our analysis extent. This conservation score represented a quantitative measure of conservation value given the input data summarized at a particular spatial scale. WLC models involve assigning a weight to each variable according to its real or perceived importance. The final step of the WLC method typically involves identifying areas (in our case contiguous groups of pixels of a certain size) based on the rank of the conservation scores across the analysis extent. The area with the highest mean score is the ‘best’ area. The results of WLC analyses, however, can be highly sensitive to the weights assigned to each variable. To address the potential sensitivity of WLC model results to the weights applied to each variable, we developed an approach to calculate a set (vector) of conservation scores for every pixel based on different weighting schemes. We then calculated the mean conservation score across all weighting schemes as an indicator of overall conservation value and the standard deviation of the conservation score across all weighting schemes as an indicator of the sensitivity of the score to the weighting scheme applied. These steps were repeated for each scale of analysis.

Quantifying and mapping scale-dependent core areas and ‘Conservation Priority Areas’
We defined two distinct types of high value areas based on the conservation scores at each scale of analysis. First, scale-dependent core areas were identified as those places within the analysis extent with high mean conservation scores and low standard deviation (i.e., sensitivity) values at each scale of analysis. These areas were identified by retaining any pixels above the 80th percentile of mean conservation scores and below the 20th percentile of sensitivity values (an 80/20 threshold). Although any number of threshold values could be applied, we chose this threshold to demonstrate a reasonable and data-driven application of our results. Second, we identified where scale-dependent core areas overlapped at all three scales of analysis, indicating areas that were robust to choice of scale. We refer to these areas as conservation priority areas.

As a large-scale landscape analysis based on discrete variables associated with high climate resiliency, biodiversity, and/or landscape connectivity, this analysis does not address the importance of other values associated with intact, 'roadless' areas across the BLM domain. As a decision support tool for conservation management decisions, the analysis and associated results are intended as additive – not a substitute – to conservation prioritizations that may address other important values such as wilderness characteristics, sensitive species habitat, rare vegetation associations, archeological resources, scenic values, and other unique natural or cultural information.

All results were derived within three BLM planning areas in Alaska, namely the Bering Sea/Western Interior, Central Yukon, and Eastern Interior planning areas.

Full metadata can be viewed upon download in the file named 'metadata1_original.xml'

Dickson, B.G., L.J. Zachmann, and C.M. Albano. 2014. Systematic identification of potential conservation priority areas on roadless Bureau of Land Management lands in the western United States. Biological Conservation, 178:117-127.
Data Provided By:
This shapefile was produced under a contract between the Pew Environment Group and Conservation Science Partners. The Pew Environment Group is the owner of these data. These data may not be redistributed or sold without permission from the owner. For any products derived with these data, always cite the Pew Environment Group and the authors. This shapefile should be cited as: Zachmann, L.J., B.G. Dickson, and C.M. Albano. 2014. Shapefile depicting conservation priority areas on Bureau of Land Management lands in Alaska. The Pew Charitable Trusts. By downloading these data, you agree that that your name and contact information will be made available to the authors and the Pew Environment Group.
Content date:
not specified
Citation:
Zachmann, L.J., B.G. Dickson, and C.M. Albano. 2014. Shapefile depicting conservation priority areas on Bureau of Land Management lands in Alaska. The Pew Charitable Trusts.
Contact Organization:
Conservation Science Partners, Inc. (www.csp-inc.org)
Contact Person(s):
Use Constraints:
This shapefile is provided for public use by the Pew Charitable Trusts. The Pew Environment Group is the owner of these data. Any applications or publications drawing on these data, in novel analyses, reports, peer-reviewed articles, theses, or other forms, should be undertaken in consultation with Leslie Duncan (Lduncan@pewtrusts.org) at Pew. The source of the data should be properly referenced using the citation provided under credits. By downloading these data, you agree that that your name and contact information will be made available to the authors and the Pew Environment Group. Use of this dataset is best applied within the range of scales at which it was derived: 20-100's of square kilometers. Additional uses or use limitations are described in Dickson et al. (2014).
Layer:
Layer Type:
Currently Visible Layer:
All Layer Options:
Layers in this dataset are based on combinations of the following options. You may choose from these options to select a specific layer on the map page.
Description:
Spatial Resolution:
Credits:
Citation:
Purpose:
Methods:
References:
Other Information:
Time Period:
Layer Accuracy:
Attribute Accuracy:
FGDC Standard Metadata XML
Click here to see the full FGDC XML file that was created in Data Basin for this layer.
Original Metadata XML
Click here to see the full XML file that was originally uploaded with this layer.
This dataset is visible to everyone
Dataset Type:
Layer Package
Downloaded by 5 Members
Bookmarked by 1 Group
Included in 2 Public Maps , 1 Private Map

About the Uploader

Brett G. Dickson | CSP
President and Chief Scientist with Conservation Science Partners, Inc.

CSP is a 501(c)(3) nonprofit scientific collective established to meet the analytical and research needs of diverse stakeholders in conservation projects. We connect the best minds in conservation science to solve environmental problems in a comprehensive, flexible, and service-oriented manner....