This nowCOAST™ time-enabled map service provides maps of lightning strike density data from the NOAA/National Weather Service/NCEP's Ocean Prediction Center (OPC) which emulate (simulate) data from the future NOAA GOES-R Global Lightning Mapper (GLM). The purpose of this product is to provide mariners and others with enhanced "awareness of developing and transitory thunderstorm activity, to give users the ability to determine whether a cloud system is producing lightning and if that activity is increasing or decreasing..." Lightning Strike Density, as opposed to display of individual strikes, highlights the location of lightning cores and trends of increasing and decreasing activity. The maps depict the density of lightning strikes during a 15 minute time period at an 8 km x 8 km spatial resolution. The lightning strike density maps cover the geographic area from 25 degrees South to 80 degrees North latitude and from 110 degrees East to 0 degrees West longitude. The map units are number of strikes per square km per minute multiplied by a scaling factor of 10^3. The strike density is color coded using a color scheme which allows the data to be easily seen when overlaid on GOES imagery and to distinguish areas of low and high density values. The maps are updated on nowCOAST™ approximately every 15 minutes. The latest data depicted on the maps are approximately 12 minutes old (or older). Given the spatial resolution and latency of the data, the data should NOT be used to activite your lightning safety plans. Always follow the safety rule: when you first hear thunder or see lightning in your area, activate your emergency plan. If outdoors, immediately seek shelter in a substantial building or a fully enclosed metal vehicle such as a car, truck or van. Do not resume activities until 30 minutes after the last observed lightning or thunder. For more detailed information about layer update frequency and timing, please reference the nowCOAST™ Dataset Update Schedule.
The source for the data is OPC's gridded lightning strike density data on an 8x8 km grid. The gridded data emulate the spatial resolution of the future Global Lightning Mapper (GLM) instrument to be flown on the NOAA GOES-R series of geostationary satellites, with the first satellite scheduled for launch in late 2016.
The gridded data is based on data from Vaisala's ground based U.S. National Lightning Detection Network (NLDN) and its global lightning detection network referred to as the Global Lightning Dataset (GLD360). These networks are capable of detecting cloud-to-ground strikes, cloud-to-ground flash information and survey level cloud lightning information. According to the National Lightning Safety Institute, NLDN uses radio frequency detectors in the spectrum 1.0 kHz through 400 kHz to measure energy discharges from lightning as well as approximate distance and direction. According to Vaisala, the GLD360 network is capable of a detection efficiency greater than 70% over most of the Northern Hemisphere with a median location accuracy of 5 km or better. OPC's gridded data are coarser than the original source data from Vaisala's networks. The 15-minute gridded source data are updated at OPC every 15 minutes at 10 minutes past the valid time.
The lightning strike density product from NWS/NCEP/OPC is considered a derived product or Level 5 product ("NOAA-generated products using lightning data as input but not displaying the contractor transmitted/provided lightning data") and is appropriate for public distribution.
This map service is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.
In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.
This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.
This service is configured with time coverage support, meaning that the service will always return the most relevant available data, if any, to the specified time value. For example, if the service contains data valid today at 12:00 and 12:10 UTC, but a map request specifies a time value of today at 12:07 UTC, the data valid at 12:10 UTC will be returned to the user. This behavior allows more flexibility for users, especially when displaying multiple time-enabled layers together despite slight differences in temporal resolution or update frequency.
When interacting with this time-enabled service, only a single instantaneous time value should be specified in each request. If instead a time range is specified in a request (i.e. separate start time and end time values are given), the data returned may be different than what was intended.
Care must be taken to ensure the time value specified in each request falls within the current time coverage of the service. Because this service is frequently updated as new data becomes available, the user must periodically determine the service's time extent. However, due to software limitations, the time extent of the service and map layers as advertised by ArcGIS Server does not always provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time extent of the service:
This US Fish and Wildlife User Group is responsible for maintaining the Pacific Southwest Region Web Mapping Portal