Predicted probability of marten year-round occurrence, 1986-2005, 4 km resolution

May 31, 2012
Description:
Predicted probability of marten year-round occurrence created with Maxent (Phillips et al. 2006) using marten detections (N = 302, spanning 1990 – 2011) and nine predictor variables: mean winter (January – March) precipitation, mean amount of snow on the ground in March, mean understory index (fraction of grass vegetation carbon in forest),  mean fraction of total forest carbon in coarse wood carbon, average maximum tree LAI, mean fraction of vegetation carbon burned, mean forest carbon (g C m2), mean fraction of vegetation carbon in forest, and modal vegetation class. Predictor variables had a grid cell size of 4 km by 4 km, vegetation variables were simulated with MC1 dynamic global vegetation model (Bachelet et al. 2001) and historical climate variables were provided by the PRISM GROUP (Daly et al. 1994).  This marten distribution model has a 10-fold cross-validated AUC of 0.863 +/- 0.021 and was generated as part of a pilot project to apply and evaluate the Yale Framework (Yale Science Panel for Integrating Climate Adaptation and Landscape Conservation Planning).

Grid Value                          Predicted Probability of Occurrence
1                                                                     0 – 0.2
2                                                                     0.2 – 0.4
3                                                                     0.4 – 0.6
4                                                                     0.6 – 0.8
5                                                                     0.8 – 1.0

References:

Bachelet D., R.P. Neilson, J. M. Lenihan, and R.J. Drapek. 2001. Climate change effects on vegetation distribution and carbon budget in the U.S. Ecosystems 4:164-185.

Daly, C., R.P. Neilson, and D.L. Phillips. 1994. A statistical topographic model for mapping climatological precipitation over mountainous terrain. Journal of Applied Meteorology 33:140–158.

Phillips, S.J., R.P. Anderson, and R.E. Schapire. 2006. Maximum entropy modeling of species geographic distributions.  Ecological Modelling 190: 231-259.

Note: The MC1 model is described in data basin (http://databasin.org/climate-center/features/mc1-dynamic-global-vegetation-model).
Data Provided By:
Conservation Biology Institute
Content date:
1986-2005
Citation:
Unpublished data
Spatial Resolution:
4291.9005116429 (meter)
Contact Organization:
not specified
Contact Person(s):
Use Constraints:
Creative Commons LicenseThis work is licensed under a Creative Commons Attribution 3.0 License.
Layer:
Layer Type:
Currently Visible Layer:
All Layer Options:
Layers in this dataset are based on combinations of the following options. You may choose from these options to select a specific layer on the map page.
Description:
Spatial Resolution:
Credits:
Citation:
Purpose:
Methods:
References:
Other Information:
Time Period:
Layer Accuracy:
Attribute Accuracy:
FGDC Standard Metadata XML
Click here to see the full FGDC XML file that was created in Data Basin for this layer.
Original Metadata XML
Click here to see the full XML file that was originally uploaded with this layer.
This dataset is visible to everyone
Dataset Type:
Layer Package
Downloaded by 4 Members
Bookmarked by 4 Groups
Included in 2 Private Maps
Included in 2 Public Galleries

About the Uploader

Conservation Biology Institute

We provide advanced conservation science, technology, and planning to empower our partners in solving the world’s critical ecological challenges