Agreement in predicted marten year-round distribution
derived from future (2076-2095) climate projections and vegetation simulations
using 3 GCMs (Hadley CM3 (Johns et al. 2003), MIROC (Hasumi and Emori 2004),
and CSIRO Mk3 (Gordon 2002)) under the A2 emissions scenario (Naki?enovi? et
al. 2000).
Projected marten distribution was created with Maxent
(Phillips et al. 2006) using marten detections (N = 302, spanning 1990 – 2011) and
eight predictor variables: mean potential evapotranspiration, mean annual
precipitation, mean fraction of vegetation carbon burned, mean forest carbon (g
C m2), mean fraction of vegetation carbon in forest, understory
index (fraction of grass vegetation carbon in forest), average maximum tree
LAI, and modal vegetation class.
Future climate drivers were generated using statistical
downscaling (simple delta method) of general circulation model projections,
under the A2 emission scenario (Naki?enovi? et al. 2000). The deltas
(differences for temperatures and ratios for precipitation) were used to modify
PRISM 800m historical baseline (Daly et al. 2008). Vegetation variables were
simulated with MC1 dynamic global vegetation model (Bachelet et al.
2001). This data layer was generated as part of a pilot project to apply
and evaluate the Yale Framework (Yale Science Panel for Integrating Climate
Adaptation and Landscape Conservation Planning).
Grid value indicates number of projections with predicted
probability of marten occurrence >= 0.5.
Bachelet D., R.P. Neilson, J.M.
Lenihan, and R.J. Drapek. 2001. Climate change effects on vegetation
distribution and carbon budget in the U.S. Ecosystems 4:164-185.
Daly, C., M. Halbleib, J.I.
Smith, W.P. Gibson, M.K. Doggett, G.H. Taylor, J. Curtis, and P.A. Pasteris.
2008. Physiographically-sensitive mapping of temperature and precipitation
across the conterminous United States. International
Journal of Climatology 28: 2031-2064.
Gordon, H.B., L.D. Rotstayn,
J.L. McGregor, M.R. Dix, E.A. Kowalczyk, S.P. O’Farrell, L.J. Waterman, A.C.
Hirst, S.G. Wilson, M.A. Collier, I.G. Watterson, and T.I. Elliott. 2002. The CSIRO Mk3 climate system model.
CSIRO Atmos. Res. Tech. Pap., 60, 130 pp., Commonwealth Scientific and
Industrial Research Organisation, Aspendale, Victoria, Australia.
Hasumi, H., and S. Emori, Eds.
2004. K?1 Coupled GCM (MIROC) Description, K?1 Tech. Rep. 1, 34 pp., Cent. for
Clim. Syst. Res., Tokyo, Japan. Available online at http://www.ccsr.u?tokyo.ac.jp/kyosei/hasumi/MIROC/tech?repo.pdf
Johns, T.C., J.M. Gregory, W.J.
Ingram, C.E. Johnson, A. Jones, J.A. Lowe, J.F.B. Mitchell, D.L. Roberts,
D.M.H. Sexton, D.S. Stevenson, S.F.B. Tett, and M.J. Woodage. 2003.
Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model
under updated emissions scenarios. ClimDyn 20: 583-612.
Naki?enovi?, N. and R. Swart,
Eds. 2000. Emissions Scenarios: A
Special Report of Working Group III of the Intergovernmental Panel on Climate
Change. Cambridge Univ. Press, Cambridge, U. K.
Phillips,
S.J., R.P. Anderson,
and R.E. Schapire. 2006. Maximum
entropy modeling of species geographic distributions.
Ecological
Modelling 190: 231-259.